منابع مشابه
Notes on Fredholm operators
(2) If K ∈ B(X) is compact, then for all λ ∈ C \ {0}, K − λ1 is Fredholm with index zero. (3) The shift operator S± ∈ B(`p) for 1 ≤ p ≤ ∞ defined by (S±x)n = xn±1 is Fredholm with index ±1. (4) If X,Y are finite dimensional and T ∈ B(X,Y ), then by the Rank-Nullity Theorem, ind(T ) = dim(X)− dim(Y ). Lemma 3. Suppose E,F ⊆ X are closed subspaces with F finite dimensional. (1) The subspace E + F...
متن کاملOn the space of Fredholm operators
We compare various topologies on the space of (possibly unbounded) Fredholm selfadjoint operators and explain their K-theoretic relevance.∗ Introduction The work of Atiyah and Singer on the index of elliptic operators on manifolds has singled out the role of the space of bounded Fredholm operators in topology. It is a classifying space for a very useful functor, the topological K-theory. This m...
متن کاملHomeomorphisms and Fredholm Theory for Perturbations of Nonlinear Fredholm Maps of Index Zero with Applications
We develop a nonlinear Fredholm alternative theory involving k-ball and k-set perturbations of general homeomorphisms as well as of homeomorphisms that are nonlinear Fredholm maps of index zero. Various generalized first Fredholm theorems are given and finite solvability of general (odd) Fredholm maps of index zero is also studied. We apply these results to the unique and finite solvability of ...
متن کاملFredholm Operators and the Generalized Index
One of the most fundamental problems in mathematics is to solve linear equations of the form Tf = g, where T is a linear transformation, g is known, and f is some unknown quantity. The simplest example of this comes from elementary linear algebra, which deals with solutions to matrix-vector equations of the form Ax = b. More generally, if V,W are vector spaces (or, in particular, Hilbert or Ban...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1974
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-52-1-1-8